Usage Examples
Basic Distance Calculation
Using the default pre-defined map for common OCR errors:
from ocr_stringdist import WeightedLevenshtein
# Compare "OCR5" and "OCRS"
# The default ocr_distance_map gives 'S' <-> '5' a cost of 0.3
distance: float = WeightedLevenshtein().distance("OCR5", "OCRS")
print(f"Distance between 'OCR5' and 'OCRS' (default map): {distance}")
# Output: Distance between 'OCR5' and 'OCRS' (default map): 0.3
Using Custom Costs
Define your own substitution costs:
from ocr_stringdist import WeightedLevenshtein
# Define a custom cost for substituting "rn" with "m"
wl = WeightedLevenshtein(substitution_costs={("rn", "m"): 0.5})
distance = wl.distance("Churn Bucket", "Chum Bucket")
print(f"Distance using custom map: {distance}") # 0.5
Matching OCR Output Against Candidates
This is a primary use case: finding the best match for an OCR string from a list of known possibilities.
import ocr_stringdist as osd
ocr_output = "Harnburg" # OCR potentially misread 'm' as 'rn'
possible_cities = ["Harburg", "Hamburg", "Hannover", "Berlin"]
# Define costs relevant to the potential error
wl = osd.WeightedLevenshtein(substitution_costs={("rn", "m"): 0.2})
# Method 1: Using find_best_candidate
best_match_finder, min_distance_finder = osd.find_best_candidate(
ocr_output,
possible_cities,
distance_fun=wl.distance,
)
print(
f"(find_best_candidate) Best match for '{ocr_output}': '{best_match_finder}' "
f"(Distance: {min_distance_finder:.2f})"
)
# Output: (find_best_candidate) Best match for 'Harnburg': 'Hamburg' (Distance: 0.20)
# Method 2: Using WeightedLevenshtein.batch_distance
# Generally more efficient when comparing against many candidates.
distances: list[float] = wl.batch_distance(ocr_output, possible_cities)
min_dist_batch = min(distances)
best_candidate_batch = possible_cities[distances.index(min_dist_batch)]
print(
f"(Batch) Best match for '{ocr_output}': '{best_candidate_batch}' "
f"(Distance: {min_dist_batch:.2f})"
)
# Output: (Batch) Best match for 'Harnburg': 'Hamburg' (Distance: 0.20)
Explaining Edit Operations
You can get a detailed list of edit operations needed to transform one string into another.
from ocr_stringdist import WeightedLevenshtein
wl = WeightedLevenshtein(substitution_costs={("日月", "明"): 0.4, ("末", "未"): 0.3})
s1 = "末日月" # mò rì yuè
s2 = "未明" # wèi míng
operations = wl.explain(s1, s2)
print(operations)
# Output:
# [
# EditOperation(op_type='substitute', source_token='末', target_token='未', cost=0.3),
# EditOperation(op_type='substitute', source_token='日月', target_token='明', cost=0.4)
# ]